The Nation’s Waterways are Becoming Saltier, Study Says

A beautiful pristine winter woodland with a pure cold stream rushing by

A new study documents increased salinization and alkalinization of North America’s freshwater supplies at the continental scale. (Matt Champlin/Getty Images)

Across North America, streams and rivers are becoming saltier, thanks to road deicers, fertilizers, and other salty compounds that humans indirectly release into waterways. At the same time, these waterways are becoming more alkaline.

A new study, published in the Jan. 8 early edition of the Proceedings of the National Academy of Sciences, assesses long-term changes in freshwater salinity and pH at the continental scale. The research was conducted by scientists at the University of Connecticut, University of Maryland, Cary Institute of Ecosystem Studies, the University of Virginia, and Chatham University.

“Our study is the first to document a link between increased salinization and alkalinization at the continental scale. Until now, we didn’t fully appreciate the role that different salts play in altering the pH of streams and rivers of our country,” says study co-author Gene Likens, distinguished research professor at the University of Connecticut and president emeritus of the Cary Institute of Ecosystem Studies. “Salt content and pH are fundamental aspects of water chemistry, so these are major changes to the properties of freshwater.”

Salty, alkaline freshwater can create big problems for drinking water supplies, urban infrastructure, and natural ecosystems. For example, when Flint, Michigan, switched its primary water source to the Flint River in 2014, the river’s high salt load combined with chemical treatments to make the water more corrosive, causing lead to leach from water pipes and creating that city’s well-documented water crisis.

The study, based on data recorded at 232 U.S. Geological Survey monitoring sites across the country over the past 50 years, shows significant increases in both salinization and alkalinization. It also suggests a close link between the two properties, with various different salt compounds combining to do more damage than any one salt on its own.

The analysis has implications for freshwater management and salt regulation strategies in the United States, Canada, and beyond.

“We created the name ‘Freshwater Salinization Syndrome’ because we realized it’s a suite of effects on water quality, with many different salt ions linked together. We didn’t know that before,” says Sujay Kaushal, a professor of geology at UMD and lead author of the study. “Many people assume that when you apply salt to the landscape, it just gets washed away and disappears. But salt accumulates in soils and groundwater and takes decades to get flushed out.”

According to Kaushal, most freshwater salinization research has focused on sodium chloride, better known as table salt, which is also the dominant chemical in road deicers. But in terms of chemistry, salt has a much broader definition, encompassing any combination of positively and negatively charged ions that dissociate in water. Some of the most common positive ions found in salts – including sodium, calcium, magnesium, and potassium – can have damaging effects on freshwater at higher concentrations.

“These ‘cocktails’ of salts can be more toxic than just one salt, as some ions can displace and release other ions from soils and rocks, compounding the problem,” says Kaushal, who also has an appointment in UMD’s Earth System Science Interdisciplinary Center. “Ecotoxicologists are just now beginning to understand this.”

The current study is the first to simultaneously account for multiple salt ions in freshwater across the United States and southern Canada. The results suggest that salt ions, damaging in their own right, are driving up the pH of freshwater as well, making it more alkaline. Over the time period covered by the study, the researchers concluded that 37 percent of the drainage area of the contiguous United States experienced a significant increase in salinity. Alkalinization, which is influenced by a number of different factors in addition to salinity, increased by 90 percent.

The root causes of increased salt in waterways vary from region to region, Kaushal says. In the snowy Mid-Atlantic and New England, road salt applied to maintain roadways in winter is a primary culprit. In the heavily agricultural Midwest, fertilizers – particularly those with high potassium content – also make major contributions. In other regions, mining waste and weathering of concrete, rocks, and soils release salts into adjacent waterways.

By Combined reports | Story courtesy of UConn Today

More News Stories

Upcoming Events

  1. Oct 14 The Persistence of Myth: Brazil's Undead Racial Democracy12:20pm
  2. Oct 14 Particle, Astrophysics, and Nuclear Physics Seminar2:00pm
  3. Oct 15 Colloquium: Sanford Levinson12:30pm
  4. Oct 15 Condensed Matter Physics Seminar2:00pm
  5. Oct 15 Getting Started in Undergraduate Research3:00pm